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“Nonlinear” radiation of a sine-Gordon soliton generated by a constant external field
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Cooperation of the nonlinearity and of a constant external field below a critical value f,;, is shown to
generate a traveling radiation in a forced sine-Gordon system.
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I. INTRODUCTION

There exists a general approach to find solutions of the
nonlinear Klein-Gordon (KG) class: stable stationary or
traveling-soliton solutions to the nonlinear wave equation
and small oscillations (linear excitations) about these
solutions [1]. In general, this scheme applies both for
quantum and classical cases; while in the former case it
represents the WKB approximation to the solution, in
the latter one it tests the stability of the static or of the
traveling solution against external perturbations. The
linear perturbation scheme for the oscillations is obtained
by linearization of the KG equations about the soliton or
the ground-state solutions and it also represents a basis
for the linear-stability analysis of the respective soliton
solutions. However, in the presence of constant external
perturbations this linear-perturbation scheme can become
insufficient. Namely, the higher- (third-) order terms in
the perturbation expansion in cooperation with a con-
stant external field imply new stable traveling oscillations
with the amplitude proportional to the field. This kind of
solution is of the family of the driven traveling solutions
for a ¢* system obtained by Lal [2]. The driven ¢* prob-
lem as a short-range approximation of a sine-Gordon one
in a low constant field includes its relevant nonlinear
properties. Here, the nonlinearity mediates the transfor-
mation of the excess energy gained by the system from
the field to the emitted radiation. The significant feature
of the oscillation is the proportionality of the respective
amplitude to the external field. Numerical solution of the
constantly driven sine-Gordon equation, namely the dy-
namics of the antisoliton [3] or of a soliton (this paper)
for weak fields f < f.,,, exhibits oscillations of the con-
stant part of the kink with the amplitude of the oscilla-
tions proportional to the field as well as generation of
traveling oscillations by moving of the kink wall. The ve-
locity of the soliton approaches asymptotically an upper-
bound value.

II. DRIVEN SINE-GORDON SYSTEM

We will study the equation

q)tt—c%(bxx+8inq>=—f ’ (1)
which for | f| <1 has a multistable ground state

®,= —arcsinf +27n, n=0,%1,.... (2)
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Linear perturbations of ®, are the plane waves (phonons)

Y(x,1)=1, 3 expli(kx —w,1)],
* 3
Wt =(1—f)24c2k? .

Evidently, the sine-Gordon gap A(f)=2(1—f%)!* is
lowered by the field.

Our aim is to generalize the perturbation scheme of
Eq. (1), so that in the equation for fluctuations (x,t)
defined by

D(x,1)=D,+(x,1) (4)
together with (1), namely

¥, —cd, +(1—fH %ing+ f (1—cosyp)=0, (5)

we shall go beyond the linear approximation (3) up to
third order, so that we get

V=3t LA = 1g)=0.  ©
Equation (6) can be transformed to the “normal form”

Yy —Cotux + AY—BY’+F=0, (7)
where

W(x,1)=1(x,t)+tand, , 8

1—1f2
A= B,
3—of2 )
F= %a_—jfﬂ—;arcsinf .

According to Lal [2] there exists a class of traveling oscil-
lations which obey Eq. (7) exactly,

_ ny+cos[w(x —vt)]

an2+cos[w(x —ut)] "’ (19

where the coefficients a, w, n,, n, follow from the substi-
tution of the ansatz (10) into Eq. (7). Then, by eliminat-
ing F, they can be obtained as
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An3
a2=—~——*—,
B(n}+2)

_ 2
n,=- nz—n—z N

where n,>1, c% >p2. Besides, the coefficient a has to
satisfy equation

— Aa +Ba*=F (12)

from which, together with (11), is determined the
coefficient n,. The traveling velocity of the oscillations v
still remains arbitrary.

The case v2> c3 leads to the solution of the form

24(n%—1)
(c—vHni+2)’

2

(11

—_ nytcosh[w(x —vt)] (13)
y=a n,+cosh[w(x —vt)] ’

2
osh?y

Yy —Cot T+ ll— .

In the thin-wall approximation, for d <<1, or
cosh™2y =0, Eq. (15) becomes identical with (5) and ¥
means then the change of the constant part of the kink
due to external field f. Further considerations which fol-
lowed Eq. (5) remain valid for this case.

Let us use this preliminary calculation in consideration
of the following situation. For ¢z <0 we shall assume the
unperturbed sine-Gordon (SG) equation (f =0) with the
SG-soliton solution traveling with the velocity v,

@y, = t4arctan exp[(x —vot)/(1—v3)2].  (16)

At t =0 we switch on (immediately) the external constant
force f. Numerical solution of Eq. (1) is given in Fig. 1
for f =0.4 for various times. The solution exhibits these
features: (i) a kink wall is preserved and generates the
traveling oscillations behind it in the opposite direction.
These oscillations will be identified with the above given
solution of Eq. (6). (ii) The uniform part of the phase ®
oscillates.

The oscillations of the uniform part z(¢)=®(— o0,t)

FIG. 1. Time evolution of the SG soliton for f=0.4 and
vy =0 governed by Eq. (1) with the initial condition (16). From
left to right, the moving soliton is depicted at times 4 s, 85, 125,
and 16 s (dashed line).

[(1— )Y %iny+ f (1 —cosy) | ==
C
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which is in contradiction with numerical calculations.
As will be seen later from numerical calculation this be-
havior of perturbation (traveling with velocity v2>¢c2) is
not present and can be excluded from our considerations.

Further, we shall start from the soliton ansatz (we fix
co=1) ®x==x4arctanexpy, y =(£—&y))/d; E=x —vt
and d =(1—v?)!""2 when f =0. For small f, f2<<1, we
shall investigate the change of the dynamics of the soliton
as

D(x,t)= —arcsinf +2mn + Py +(x,t) ,

Then, for fluctuations ¥(x,?) we get

2 sinhy

W |14 (1= 21 2cosy+ f sing]— —2— . 15)
osh“y cosh”y

[
are governed by the equation

Z4sinz=—f, (17)

which describes motion of a “particle” in the potential
V(z)=1—cosz +fz with the boundary conditions
z(0)=0 and 2(0)=0. The resulting motion is periodic if
f <fuit» where f . =0.72461 can be calculated from
the condition at which the “particle” escapes from the
potential well.
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FIG. 2. (a) Solution of Eq. (17). Time evolution of the uni-
form part ®(— o,?) of the SG soliton for various values f. Ac-
cording to the increasing amplitude f=0.1, f=0.2, f=0.3,
f=0.4. (b) Solution of Eq. (17). According to the increasing
amplitude f =0.5, £ =0.6, f =0.7, f =0.8> f ;-
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FIG. 3. Time evolution of the SG soliton for f=0.4 and
vy =0 governed by Eq. (1) with the initial condition (18). From
left to right, the moving solition is depicted at times 4 s, 8 s, 12
s, and 16 s (dashed line).
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FIG. 5. The same as Fig. 3 for f =0.6.

FIG. 6. The same as Fig. 3 for v, =0.5¢,.
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FIG. 7. Time evolution of the SG soliton for f=—0.4 and
vo =0 governed by Eq. (1) with the initial condition (18). From
right to left, the moving solition is depicted at times 4 s, 8 s, 12
s, and 16 s (dashed line).

Numerical solution of Eq. (1) exhibits the features ob-
tained above analytically. Especially the proportionality
of the amplitude of the radiation of the kink to f and the
numerical value of f_; are in agreement with the calcu-
lations given above. These oscillations of the uniform
part (see Fig. 2) can be excluded from the consideration if
we switch on external force at ¢t =0 immediately as we
shift about the stable static solution ®, the whole initial
kink ®g, (16). This means that we solve Eq. (1) by

boundary conditions

D(x,0)=Dy,, +P; . (18)

The numerical solutions are given in Figs. 3—7. They
show a strong transient nature of the soliton dynamics.
Further, comparison of Figs. 3 and 7 shows a symmetry
between solutions for given external forces f and — f by
initially static kink (v,=0). More precisely, if
f=fy>0 and vy,=0 with solution P, (x,t)=P,
+(x,t), then for f=—f, <0 the solution reads
D_(x,1)=2m—P  (—x,1).

III. TRANSIENT DYNAMICS OF THE COLLECTIVE
COORDINATES

A convenient insight into the transient dynamics of the
driven soliton gives the behavior of collective coordi-
nates, i.e., of the width and the center of the soliton [4,5].

In weak fields f, the dynamics of the kink

®(x,t)==x4arctanexp{2[x —X(¢)]/L (1)} + &, , (19)

with @ = —arcsinf is described by the dynamic equation
for
=" %0, prn=—aEl L 20
= , t)= t
PxIO= Ty A PTG,
given by [5]
dpx
a
dp; 1 |pi ., ,| auw
— e | 21
dt 2mLy | a REE oL ’ @D




3680
where
Es LO L (1)
=— +cos®, —— |,
U(L) 2 | Zo cosd, L,
(22)
-
m,=cy ’E,, E,=8c,, a=- o
Initial conditions are
2 1172
Vo
L(0)=L,=2 1"‘"{} ,
o
A 23)
Vo
Px(O)EPOstUO/ 1__2]
Co
Using Egs. (20)-(23), we get
. . )2
d |L| L [L | b [cos® 1
dt | L 2 |L 2a L} L?
2
Po
+2p% |t + =0, (24
B 2 (24)

where B=7f/a'>’m L, and p, is an initial momentum
Px(0)=py. A way to solve Eq. (24) is to use the ansatz
L (t)=g?(¢) which gives

2

2 P22 o
gH{Q+p(t"+itpy/(fm))]g — 320, (25)
4ag
where
2 2
1= 5 |cos®, + p20 >
4aLO mSCO

If B=0 (f =0), then Eq. (24) has an exact solution [4]

CLO .
L(t)z ) 172 [lislnzﬂo(t~t1)] ’ (26)
Po
1+ 73
mgcCo
where
2 2
C
03=—2 1+ 2| (7)
aLO mgcy

¢, 1| are constants.

Transient behavior for small ¢t <<p,/7f can be found
approximately by separation of the slowly varying part of
8, &, =0, and the oscillating part g, g =g, +g, so that
J

g.(n)=

1/2
c,y
rV8(A%+yt) 1/4! {c1+—‘/_3 }cos

3
T

IV. CONCLUSIONS

We have shown that a sine-Gordon soliton driven by
a small constant external field f < f_;, =0.7246 exhibits

2AA* +yt)? 5w
3y
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Ly
L —o2= . (28)
<& [cos®, +(py+2mft)*/(m2cd)]'/?
The oscillating part g, <<g, then fulfills
4oz o 3€0
g +0%g +—7g,=0 (29)
dag;
or
. Dol
g+ | A4 g =0, (30)
Tf
where
2 2
¢
Ar= 5 |cos® + Po (31)
aLO SZC(Z)
If we introduce a new variable
— (A2 23 a2 PO
E=(A+yt)/y*°, y=4p"—, (32)
f
then Eq. (30) turns to [g,(¢2)=7(§)]
d2
;-;ZL +E&n=0. (33)
The solution to Eq. (33) is a cylindric function [6]
E)=EV2Z, (28372 /3) , (34)
where
Z(x)=c J,(x)Fc, Y (x), x=2£7, (35)
and J,, Y, are Bessel functions of the first order,
cos(vr)J (x)—J _ (x)
Y, (x)= - , (36)
sin(vr)
- ( l)k v+2k
— x
=3 —— ___|X . 37
= 2 Trrk+ D |2 7
For [f] <<1 (x >>1), v=1, we have
5 172 s
T
Jy3(x)= . cos |x = |
5 172 (38)
T
J_p5lx)= — cos |x —— = | .

Evidently, the transient oscillations of the collective coor-
dinates L (¢) and X (¢) given by g,(¢)=%(£) are induced
by the external field f. For small f and small ¢ we get
finally

——2—c cos ANy (39)
12 V32 3y 12

[

periodic nonsinusoidal traveling oscillations. These oscil-
lations can be found analytically in the limit of a vanish-
ing soliton width (truncation approximation for a soliton
and fluctuation dynamics) as an exact solution of a non-
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linear equation for fluctuations. The radiation appears as
a result of an interplay of the nonlinearity and of a con-
stant field. According to the numerical results the kink
can be accelerated up to the maximum velocity v,,, <cg,
so that it appears that the energy obtained from the field
transforms to the radiation. Numerical investigations
show the highly transient nature of the dynamics. An

analytical treatment is possible for small times for the dy-
namics of the collective coordinates. In the transient re-
gion the soliton velocity consists of two parts, one grow-
ing approximately linearly with the time, X (¢)
=(2mft/m,L,)L,(¢), and an oscillating part, v
~(4mft/m,Ly)L,)""%g,(t),g, given by (39).
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